DSP in HF Radios
How DSP implements typical transceiver functions

Adam Farson
VA7OJ

Copyright © 2006 North Shore Amateur Radio Club
What is DSP and what does it do?

DSP: Digital Signal Processing. Analogue signals are digitized in A/D converter (ADC), processed in DSP IC (a specialized CPU), then re-converted to analogue in D/A converter (DAC).

DSP allows much more complex signal processing and manipulation with much simpler circuitry (reduced parts count/cost) and much greater stability/repeatability than analogue designs. No alignment or “tweaking” is required.
ADC Considerations – influence on overall receiver design

- ADC is final IF stage of superhet.
- Max. input power to ADC yields “all 1’s” at output.
- Preceding analogue circuits must hold ADC input level safely below this point.
- Theoretical dynamic range of 24-bit ADC = 24*6 = 144 dB (all 0’s to all 1’s). ADC noise floor sets practical limit of 20 usable bits (120 dB).
- AGC “stretches” ADC dynamic range, but limitations of analogue RF & IF circuits ahead of ADC input will limit overall dynamic range of receiver system.
DSP Functions in Receiver

- RX selectivity filtering & manual notch filter (pre-AGC).
- Noise Blanker (NB) in some designs.
- AGC.
- Demodulation (all modes).
- In “DET” block:
 - Noise Reduction (NR).
 - Auto notch.
 - CW pitch adjustment.
 - RTTY twin-peak filter & decoder/reader.
DSP IF Filter Advantages

- IF filters as narrow as 50 Hz are possible; not practical in analogue filters.
- Group delay is constant across passband; thus, no ringing at narrow BW settings.
- Phase distortion is negligible; filter does not degrade CW/data signals in narrow BW.
- Zero “insertion loss”; no terminating-impedance, temperature-drift or alignment issues.
- Shape factors and stopband attenuation far superior to analogue, without concerns about insertion loss or phase distortion at passband edges.
- Selectable shape factors allow filter optimization to suit varying band and signal conditions.
- Manual notch filter stopband -70 dB or better, vs. -40 dB for analogue 9 MHz notch in conventional receiver.
- Continuously-variable bandwidth, not feasible with analogue filters.
- Twin Passband Tuning shifts upper and lower passband flanks independently.
- CW and RTTY filters optimized for those modes.

No optional filters to buy, ever!
AGC and Noise Blanker in a DSP Receiver

AGC (Automatic Gain Control):
- AGC is derived within the DSP after IF filtering; adjusts gain inside DSP, between IF filtering & demodulation. It also generates a bitstream which a dedicated DAC converts to a DC AGC voltage. This voltage controls stage gain of analogue IF amplifiers. DSP AGC parameters are **stable**.
- AGC "stretches" receiver dynamic range.
- DSP allows wide range of AGC **time-constant** settings.
- "RF Gain" control raises DSP AGC threshold.
- DSP-derived AGC is sometimes paired with an analogue AGC loop, using detector at ADC input (not in Icom DSP radios).

NB (Noise Blanker)
- Earlier IF-DSP receivers (incl. IC-756Pro3) have pulse-type analogue NB in IF chain prior to ADC input. Newest trend is an NB algorithm in the DSP (e.g. IC-7000, IC-7800).
- With DSP NB, fewer freq. conversions prior to ADC eliminate pulse-stretching due to cascaded analogue IF filters.
DSP Noise Reduction

- Noise Reduction (NR)
 - *Often makes the difference between “copy” and “no copy”.*
 - Not feasible in analogue technology.
 - NR discriminates between low-correlation (speech, tone) and high-correlation (noise) signals. Computes out high-correlation signals.
 - NR is a *heuristic* (learning) process; builds up history of compared signals. Pro3 reinitializes NR approx. every 15 sec.
 - NR can improve S/N ratio by up to 20 dB, but causes slight loss of highs in recovered audio.
 - 16-step NR control allows best compromise between noise suppression and intelligibility.
 - NR is less effective at narrow IF bandwidth (CW, RTTY).
Demodulation and associated DSP features

- DSP demodulation process **never** needs alignment (*no “BFO”*).
 - DSP demodulation does not distort recovered baseband.
 - Adds AM sidebands in phase; models discriminator for FM.
 - CW pitch control allows operator to vary CW pitch for comfortable copy, without tuning off the receive frequency.
 - Dedicated RTTY demodulation process demodulates FSK, decodes Baudot code and displays received text on radio’s TFT screen. RTTY twin-peak filter is tuned to mark and space tones. Adjustable demod. threshold for accurate copy in presence of noise. **No external TU or modem required.**
 - In some radios (e.g. IC-7800), DSP demodulation process also drives “waterfall” and vector displays, and decodes PSK31.
DSP Functions in Transmitter

- Baseband processing.
- Modulation and keying.
- IF-level speech compression.
- Transmitted-signal monitor.
- Occupied-bandwidth management.
- ALC (in some designs).
Baseband Processing in DSP Transmitter

- Speech amplifier drives analogue input of ADC.
- Baseband processing sets transmit AF level.
- Also provides bass and treble **equalization** to optimize AF response with a wide range of microphones.
- Unlike some analogue “EQ”, DSP equalization does not add noise or distortion to baseband. No external analogue audio devices are needed; potential EMC/RFI issues are eliminated.
- Maintains correct **AM** carrier/sideband amplitude relationship for desired % modulation (max. 100%).
DSP IF-Level Compression

- IF-level compression: after modulation, prior to TX BW filtering.
- Fast-attack, slow-decay. Compression level is adjustable; 6 dB is optimum for SSB.
- DSP compression process does not significantly distort compressed signal; does not generate unwanted sidebands or “splatter”.
- Compression in digital domain is much simpler and more cost-effective than any analogue compressor circuit.
- DSP compression is stable; no alignment required.
Management of TX occupied bandwidth in DSP

- Occupied-bandwidth management (TX BW filtering).
 - Sets SSB TX occupied bandwidth.
 - 3 selectable SSB TX bandwidths (Wide, Mid, Narrow). Low- and high-end cutoff frequencies individually configurable for each BW selection (in IC-756Pro3).
 - SSB TX BW limited to 2.9 kHz.
 - Sets AM occupied bandwidth (limited to 5.8 kHz).
 - CW TX waveform rise-time is adjustable to minimize key-clicks.
 - FSK mark frequency, shift and keying polarity are adjustable.
 - Limits TX FM peak deviation (accurately) to ±5 or ±2.5 kHz as function of RX IF filter selection.
DSP ALC Implementation

- -

- In some transmitter designs, ALC voltage is fed back to a voltage-sensing point on the DSP IC. This varies the transmit gain within the DSP. This facilitates adjustment of ALC parameters (attack & decay times, threshold.)
- In the Icom DSP-based transceivers, the ALC loop is purely analogue. ALC voltage is fed back to gain-controlled transmit IF amplifier.
DSP in Spectrum Scope

- IC-756Pro series etc. have analogue spectrum scope.
- IC-7800 Spectrum Scope has dedicated DSP “back end”.
- DSP functions as an **FFT spectrum analyzer**.
- DSP offers much better linearity, accuracy and resolution than analogue scope. DSP does not require alignment.
- Resolution bandwidth (RBW) is adjustable. (RBW is fixed in analogue scope.)
- Scope is usable for on-air IMD and spectral-purity measurements.
References

1. IC-756Pro II Technical Report
2. Basic Concept of Icom DSP